Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Biomedica ; 41(2): 353-373, 2021 06 29.
Article in English, Spanish | MEDLINE | ID: mdl-34214275

ABSTRACT

The chikungunya virus (CHIKV) is an Alphavirus that belongs to the Old World group. These arthritogenic viruses cause a febrile illness characterized by arthralgias and myalgias. Although fatal cases during CHIKV infection are rare, the disease may be disabling and generate a broad spectrum of atypical manifestations, such as cardiovascular, respiratory, eye, kidney, and skin complications, among others. When joint pain persists for three or more months, it results in the chronic form of the disease called post-chikungunya chronic inflammatory rheumatism, which constitutes the main disease sequel. CHIKV is not considered a neurotropic virus; however, it can affect the central nervous system, especially in children and the elderly, causing severe and permanent sequelae. CHIKV outbreaks had been previously reported in Africa, Asia, and Europe, but the virus introduction to the American continent was documented until the end of 2013. Since then, the irus has spread to 45 countries and territories causing near two million cases in just two years. This review describes the molecular biology, clinical manifestations, pathogenesis, and significant post-infection complications of CHIKV. Additionally, it collects published information about the outbreak in Colombia and the American continent between 2014 and 2020.


El virus de chikunguña (CHIKV) es un Alfavirus perteneciente al grupo denominado del Viejo Mundo; estos son virus artritogénicos que causan una enfermedad febril caracterizada por artralgias y mialgias. Aunque la muerte por CHIKV es poco frecuente, la enfermedad puede llegar a ser incapacitante y generar un amplio espectro de manifestaciones atípicas, como complicaciones cardiovasculares, respiratorias, oculares, renales y dérmicas, entre otras. Cuando el dolor articular persiste por tres o más meses, da lugar a la forma crónica de la enfermedad denominada reumatismo inflamatorio crónico poschikunguña, el cual es la principal secuela de la enfermedad. Se considera que este virus no es neurotrópico, sin embargo, puede afectar el sistema nervioso central y generar secuelas graves y permanentes, principalmente, en niños y ancianos. En África, Asia y Europa se habían reportado anteriormente brotes epidémicos por CHIKV, pero solo hasta finales del 2013 se documentó la introducción del virus a las Américas; desde entonces, el virus se ha propagado a 45 países o territorios del continente y el número de casos acumulados ascendió a cerca de dos millones en dos años. Esta revisión describe de manera general la biología molecular del virus, sus manifestaciones clínicas, su patogénesis y las principales complicaciones posteriores a la infección. Además, reúne la información de la epidemia en Colombia y el continente americano publicada entre el 2014 y el 2020.


Subject(s)
Chikungunya Fever , Chikungunya virus , Arthralgia , Chikungunya Fever/epidemiology , Disease Outbreaks , Europe , Humans
2.
Biomédica (Bogotá) ; 41(2): 353-373, abr.-jun. 2021. tab, graf
Article in Spanish | LILACS | ID: biblio-1339273

ABSTRACT

Resumen | El virus de chikunguña (CHIKV) es un Alfavirus perteneciente al grupo denominado del Viejo Mundo; estos son virus artritogénicos que causan una enfermedad febril caracterizada por artralgias y mialgias. Aunque la muerte por CHIKV es poco frecuente, la enfermedad puede llegar a ser incapacitante y generar un amplio espectro de manifestaciones atípicas, como complicaciones cardiovasculares, respiratorias, oculares, renales y dérmicas, entre otras. Cuando el dolor articular persiste por tres o más meses, da lugar a la forma crónica de la enfermedad denominada reumatismo inflamatorio crónico poschikunguña, el cual es la principal secuela de la enfermedad. Se considera que este virus no es neurotrópico, sin embargo, puede afectar el sistema nervioso central y generar secuelas graves y permanentes, principalmente, en niños y ancianos. En África, Asia y Europa se habían reportado anteriormente brotes epidémicos por CHIKV, pero solo hasta finales del 2013 se documentó la introducción del virus a las Américas; desde entonces, el virus se ha propagado a 45 países o territorios del continente y el número de casos acumulados ascendió a cerca de dos millones en dos años. Esta revisión describe de manera general la biología molecular del virus, sus manifestaciones clínicas, su patogénesis y las principales complicaciones posteriores a la infección. Además, reúne la información de la epidemia en Colombia y el continente americano publicada entre el 2014 y el 2020.


Abstract | The chikungunya virus (CHIKV) is an Alphavirus that belongs to the Old World group. These arthritogenic viruses cause a febrile illness characterized by arthralgias and myalgias. Although fatal cases during CHIKV infection are rare, the disease may be disabling and generate a broad spectrum of atypical manifestations, such as cardiovascular, respiratory, eye, kidney, and skin complications, among others. When joint pain persists for three or more months, it results in the chronic form of the disease called post-chikungunya chronic inflammatory rheumatism, which constitutes the main disease sequel. CHIKV is not considered a neurotropic virus; however, it can affect the central nervous system, especially in children and the elderly, causing severe and permanent sequelae. CHIKV outbreaks had been previously reported in Africa, Asia, and Europe, but the virus introduction to the American continent was documented until the end of 2013. Since then, the virus has spread to 45 countries and territories causing near two million cases in just two years. This review describes the molecular biology, clinical manifestations, pathogenesis, and significant post-infection complications of CHIKV. Additionally, it collects published information about the outbreak in Colombia and the American continent between 2014 and 2020.


Subject(s)
Chikungunya virus/pathogenicity , Arboviruses , Arthritis , Epidemiology
3.
Mem Inst Oswaldo Cruz ; 115: e190242, 2020.
Article in English | MEDLINE | ID: mdl-32130365

ABSTRACT

BACKGROUND: Ubiquitin (Ub) and Ub-like proteins (Ub-L) are critical regulators of complex cellular processes such as the cell cycle, DNA repair, transcription, chromatin remodeling, signal translation, and protein degradation. Giardia intestinalis possesses an experimentally proven Ub-conjugation system; however, a limited number of enzymes involved in this process were identified using basic local alignment search tool (BLAST). This is due to the limitations of BLAST's ability to identify homologous functional regions when similarity between the sequences dips to < 30%. In addition Ub-Ls and their conjugating enzymes have not been fully elucidated in Giardia. OBJETIVE: To identify the enzymes involved in the Ub and Ub-Ls conjugation processes using intelligent systems based on the hidden Markov models (HMMs). METHODS: We performed an HMM search of functional Pfam domains found in the key enzymes of these pathways in Giardia's proteome. Each open reading frame identified was analysed by sequence homology, domain architecture, and transcription levels. FINDINGS: We identified 118 genes, 106 of which corresponded to the ubiquitination process (Ub, E1, E2, E3, and DUB enzymes). The E3 ligase group was the largest group with 82 members; 71 of which harbored a characteristic RING domain. Four Ub-Ls were identified and the conjugation enzymes for NEDD8 and URM1 were described for first time. The 3D model for Ub-Ls displayed the ß-grasp fold typical. Furthermore, our sequence analysis for the corresponding activating enzymes detected the essential motifs required for conjugation. MAIN CONCLUSIONS: Our findings highlight the complexity of Giardia's Ub-conjugation system, which is drastically different from that previously reported, and provides evidence for the presence of NEDDylation and URMylation enzymes in the genome and transcriptome of G. intestinalis.


Subject(s)
Giardia lamblia/metabolism , Ubiquitin/genetics , Ubiquitination , Ubiquitins/genetics , Giardia lamblia/genetics , Models, Molecular , Signal Transduction , Ubiquitin/metabolism , Ubiquitins/metabolism
4.
Mem. Inst. Oswaldo Cruz ; 115: e190242, 2020. tab, graf
Article in English | LILACS | ID: biblio-1091241

ABSTRACT

BACKGROUND Ubiquitin (Ub) and Ub-like proteins (Ub-L) are critical regulators of complex cellular processes such as the cell cycle, DNA repair, transcription, chromatin remodeling, signal translation, and protein degradation. Giardia intestinalis possesses an experimentally proven Ub-conjugation system; however, a limited number of enzymes involved in this process were identified using basic local alignment search tool (BLAST). This is due to the limitations of BLAST's ability to identify homologous functional regions when similarity between the sequences dips to < 30%. In addition Ub-Ls and their conjugating enzymes have not been fully elucidated in Giardia. OBJETIVE To identify the enzymes involved in the Ub and Ub-Ls conjugation processes using intelligent systems based on the hidden Markov models (HMMs). METHODS We performed an HMM search of functional Pfam domains found in the key enzymes of these pathways in Giardia's proteome. Each open reading frame identified was analysed by sequence homology, domain architecture, and transcription levels. FINDINGS We identified 118 genes, 106 of which corresponded to the ubiquitination process (Ub, E1, E2, E3, and DUB enzymes). The E3 ligase group was the largest group with 82 members; 71 of which harbored a characteristic RING domain. Four Ub-Ls were identified and the conjugation enzymes for NEDD8 and URM1 were described for first time. The 3D model for Ub-Ls displayed the β-grasp fold typical. Furthermore, our sequence analysis for the corresponding activating enzymes detected the essential motifs required for conjugation. MAIN CONCLUSIONS Our findings highlight the complexity of Giardia's Ub-conjugation system, which is drastically different from that previously reported, and provides evidence for the presence of NEDDylation and URMylation enzymes in the genome and transcriptome of G. intestinalis.


Subject(s)
Ubiquitins/genetics , Giardia lamblia/metabolism , Ubiquitin/genetics , Ubiquitination , Ubiquitins/metabolism , Signal Transduction , Models, Molecular , Giardia lamblia/genetics , Ubiquitin/metabolism
5.
Biomédica (Bogotá) ; 36(supl.1): 97-108, dic. 2016. graf, tab
Article in English | LILACS | ID: lil-783527

ABSTRACT

Introduction: The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum . However, the proteins of P . falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies. Objective: To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8). Materials and methods: The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice. Results: The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli , compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies. Conclusion: The use of genetically modified strains of E . coli was essential to achieve high expression levels of the four evaluated P . falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P . falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.


Introducción. La producción de proteínas recombinantes es fundamental para el estudio funcional de las proteínas de Plasmodium falciparum . Sin embargo, las proteínas recombinantes de P . falciparum están entre las más difíciles de expresar y, cuando lo hacen, usualmente se agregan dentro de cuerpos de inclusión insolubles. Objetivo. Evaluar la producción de cuatro proteínas de P. falciparum usando como sistema de expresión dos cepas de Escherichia coli genéticamente modificadas para favorecer la producción de proteínas heterólogas y establecer una reserva de proteínas recombinantes puras y solubles, y producir anticuerpos policlonales a partir de ellas. Materiales y métodos. Las proteínas recombinantes, las cuales correspondían a secuencias parciales de PfMyoA (Miosina-A) y PfGAP50 (proteína-asociada a glideosoma de 50 kDa) y a las secuencias completas de PfMTIP (proteína de interacción con miosina-A) y PfGAP45 (proteína asociada a glideosoma de 45 kDa), fueron expresadas como proteínas de fusión con la glutatión S-transferasa y luego purificadas y usadas para producir anticuerpos policlonales en ratón. Resultados. La expresión de las proteínas recombinantes fue mucho más eficiente en la cepa BL21-CodonPlus (la cual expresa tRNAs escasos en las bacterias silvestres), que en la cepa BL21-pG-KJE8. Por el contrario, aunque la cepa BL21-pG-KJE sobreexpresa chaperonas, no redujo la formación de cuerpos de inclusión. Conclusión. El uso de cepas de E . coli genéticamente modificadas fue fundamental para alcanzar altos niveles de expresión de las cuatro proteínas recombinantes evaluadas y permitió obtener dos de ellas en forma soluble. La estrategia utilizada permitió expresar cuatro proteínas recombinantes de P . falciparum en cantidad suficiente para inmunizar ratones y producir anticuerpos policlonales y, además, conservar proteína pura y soluble de dos de ellas para ensayos futuros.


Subject(s)
Plasmodium falciparum , Escherichia coli , Recombinant Proteins
6.
Biomedica ; 36(0): 97-108, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-27622630

ABSTRACT

INTRODUCTION: The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  OBJECTIVE: To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  MATERIALS AND METHODS: The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  RESULTS: The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  CONCLUSION: The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.


Subject(s)
Escherichia coli/genetics , Plasmodium falciparum/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Proteins/chemistry , Animals , Escherichia coli/isolation & purification , Mice , Recombinant Fusion Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
7.
Biomédica (Bogotá) ; 36(supl.2): 35-43, ago. 2016. tab
Article in Spanish | LILACS | ID: lil-794015

ABSTRACT

Introducción. Las infecciones por el virus del dengue y del chikungunya presentan síntomas clínicos similares, lo cual dificulta el diagnóstico clínico. Además, son transmitidas por los mismos vectores, por lo que en una región puede haber circulación e infección simultánea con los dos virus. Los resultados de cada enfermedad, no obstante, son diferentes: la fiebre del chikungunya rara vez es fatal, pero puede dejar secuelas de tipo articular y neurológico, en tanto que el dengue es potencialmente fatal. De ahí la importancia de un diagnóstico preciso y oportuno. Objetivo. Comparar el diagnóstico presuntivo basado en los hallazgos clínicos con el diagnóstico diferencial hecho mediante pruebas de laboratorio. Materiales y métodos. Se utilizaron pruebas virológicas y serológicas específicas para dengue y chikungunya en ocho muestras de sangre de pacientes pediátricos con síndrome febril. Se empleó la reacción en cadena de la polimerasa con transcriptasa inversa para detectar los virus del dengue y del chikungunya y el método de ELISA basado en la captura de IgM para confirmar los casos de dengue. Resultados. Con base en los hallazgos clínicos, dos pacientes se clasificaron como casos probables de dengue o chikungunya, dos como casos probables de chikungunya y en cuatro no hubo diagnóstico presuntivo de infección viral. Las pruebas de laboratorio confirmaron la infección por el virus del dengue en dos pacientes, por el virus del chikungunya en otros dos e infección simultánea de dengue y chikungunya en los cuatro restantes. Conclusión. Los hallazgos clínicos no fueron suficientes para hacer un diagnóstico en pacientes pediátricos con síndrome febril, por lo cual se requirieron pruebas específicas de laboratorio para establecer con precisión el agente etiológico causante de la enfermedad.


Introduction: Dengue and Chikungunya infections have similar clinical symptoms, which makes their clinical diagnosis complex. Moreover, both are transmitted by the same mosquito vectors, which results in virus co-circulation and co-infection. However, the outcome of these diseases differs: Chikungunya fever is rarely fatal but can have permanent and severe rheumatic and neurological sequelae, whereas dengue disease is potentially fatal. Thus, accurate diagnosis is critical. Objective: To compare presumptive diagnoses based on clinical findings with the differential diagnoses based on specific laboratory tests for each virus. Materials and methods: We performed specific virological and serological tests for both dengue and Chikungunya infections on eight acute-phase blood samples collected from pediatric patients with febrile syndrome. We used RT-PCR to detect dengue and Chikungunya virus, and IgM-capture ELISA to confirm infection by dengue virus. Results: Based on clinical findings, two patients were diagnosed as probable cases of dengue or Chikungunya, and two were diagnosed as probable cases of chikungunya. Four had no presumptive diagnosis of viral infection. Laboratory tests confirmed dengue infection in two patients, Chikungunya infection in two patients, and co-infection by the two viruses in the other four patients. Conclusion: Clinical findings were not sufficient to make a diagnosis in pediatric patients with febrile syndrome; specific laboratory tests were required to establish the etiologic agent of the disease.


Subject(s)
Chikungunya virus , Dengue , Arboviruses , Coinfection , Diagnosis , Fever , Infant, Newborn
9.
Biomedica ; 36(0): 35-43, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-27622791

ABSTRACT

INTRODUCTION: Dengue and Chikungunya infections have similar clinical symptoms, which makes their clinical diagnosis complex. Moreover, both are transmitted by the same mosquito vectors, which results in virus co-circulation and co-infection. However, the outcome of these diseases differs: Chikungunya fever is rarely fatal but can have permanent and severe rheumatic and neurological sequelae, whereas dengue disease is potentially fatal. Thus, accurate diagnosis is critical.  OBJECTIVE: To compare presumptive diagnoses based on clinical findings with the differential diagnoses based on specific laboratory tests for each virus.  MATERIALS AND METHODS: We performed specific virological and serological tests for both dengue and Chikungunya infections on eight acute-phase blood samples collected from pediatric patients with febrile syndrome. We used RT-PCR to detect dengue and Chikungunya virus, and IgM-capture ELISA to confirm infection by dengue virus.  RESULTS: Based on clinical findings, two patients were diagnosed as probable cases of dengue or Chikungunya, and two were diagnosed as probable cases of chikungunya. Four had no presumptive diagnosis of viral infection. Laboratory tests confirmed dengue infection in two patients, Chikungunya infection in two patients, and co-infection by the two viruses in the other four patients.  CONCLUSION: Clinical findings were not sufficient to make a diagnosis in pediatric patients with febrile syndrome; specific laboratory tests were required to establish the etiologic agent of the disease.


Subject(s)
Chikungunya Fever/diagnosis , Chikungunya Fever/pathology , Chikungunya virus/chemistry , Dengue Virus/chemistry , Dengue Virus/immunology , Dengue/diagnosis , Diagnosis, Differential , Child , Enzyme-Linked Immunosorbent Assay , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...